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Using the theory of Lie groups, a mechanical model is developed and the equations of motion are written in coordinateless form 
for an arbitrary curvilinear model of an elastic system with dimension no higher than three, starting from the unique hypothesis 
of a continuous distribution of rigid bodies, called sections. The proposed method is illustrated using examples of the automatic 
derivation of the corresponding scalar equations, by means of which one can describe all possible models of such systems as 
beams, cables, strings, etc. �9 2006 Elsevier Ltd. All rights reserved. 

Many mechanical systems contain curvilinear components, and different mechanical models (beams, 
cables or strings) are used to describe them. The derivation of the equations of motion of such 
components, both for low strains and stresses and in the general case, is an important step when 
investigating such systems. The main purpose of the present paper is to use calculations based on Lie 
groups to obtain the equations of motion in a general and in a coordinateless form. As was shown in 
other cases (see, for example, [1] when describing the motion of robots), such a coordinateless approach 
has a number of obvious advantages. As an example of these advantages we can mention the effective 
solution of problems related to the six-dimensional form of the problems considered, with a generality 
of the calculations irrespective of whether the strains and stresses are low or not, using limited expansions 
(for example, linearization) or an automatic derivation of the scalar equations of motion. 

The discussions rest on a single mechanical hypothesis, in which the curvilinear system is regarded 
as a continuous distribution of rigid bodies, called sections of an object. A comparison with the mechanics 
of multibody systems, in particular, with the mechanics of chains, clearly demonstrates an analogy 
between the approach employed in it and the proposed approach. The difference is solely that, in the 
case of the mechanics of multibody systems, the kinematic, kinetic and dynamic quantities are functions 
of a single discrete variable, whereas in the case considered they depend on a continuous variable. The 
model proposed is the most general coordinateless model of a one-dimensional microstructure. 

In Section 1 we briefly describe the mathematical apparatus of Lie groups. In Section 2 we describe 
the model of the system and, within framework of this system, we describe the kinematic, kinetic and 
dynamic properties of the system; here we derive the equations of motion in coordinateless form. Section 
3 is devoted to the relations between the equations obtained and the classical models, such as a string, 
a beam or a cable. In Section 4 we consider problems of the automatic derivation of the equivalent 
scalar equations by parametrizing the variables and, mainly, rotations; the complexity of these scalar 
non-linear equations proves a posteriori the effectiveness of the coordinateness approach. 

1. M A T H E M A T I C A L  A P P A R A T U S  

Suppose g is a three-dimensional affine space with the usual properties of Euclidean geometry and E 
is an associated vector space. For each affine mapping A: % ~ % there is usually a linear part A 
corresponding to it, so that 

A(m)  = A ( p ) + A ( p m ) ,  Vm, p ~ %  
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We will denote by D the group of affine mappings A such that A is an element of a special orthogonal 
group SO(3). Suppose ~ is a six-dimensional vector space of skewsymmetric vector fields X: % ~ E 
such that in E there is a vector ~ x  with the following well-known property 

X ( a )  = X ( b ) + c o x  ^ b a ,  Va,  b E  % 

In other words, the linear part X of the field X is the following linear operator in E 

u ~ X ( u ) =  cox^U 

and ~ is identified with the set of screws. 
The Lie bracket is defined in ~ by the relation 

[X, Y](a) = co x ^ Y ( a )  - col, ^ X ( a ) ,  a ~ 

Hence, ~ is a Lie algebra, isomorphic with classic Lie algebra of the space D and identified with it. 
The exponential mapping exp: ~b ~ D enables us to express a finite variable using its infinitesimal 

operator, and the adjoint mapping Ad: D --> ~ ( ~ )  describes the action of displacements on the elements 
of the space ~ .  By virtue of duality, each action of the rigid body will be described by element of the 
space ~,  while the operator, which allows of this identification, represents the classical internal product 
[. I.] (the Killing form of the theory of Lie groups), defined as 

[Xl Y] = (coxl Y(P)) + (covlX(p)) 

with a right-hand side which is independent of the pointp  in the space ~. For refinement of the details 
touching on the operations defined in the space D and ~,  see [2]. 

2. T H E  M O D E L  OF T H E  S Y S T E M  

Kinemat ics .  The system is described as follows. The initial configuration is similar to the distribution 

0 ~-~ r(O) = (A(ff); il(O), j l (~) ,  k l (o ) )  

of affine frames of reference, where ~ is the curvilinear abscissa along the curve o ~ A (~), where A (c), 
for example, is the centre of inertia of the section for the given abscissa ~, while i1(~), Jl(o), kl(~) is 
the basis connected with the rigid section for this abscissa ~. We can take as this basis, for example, 
the Frenet trihedron ~ ~ A(~). Henceforth each rigid section and the system of coordinates associated 
with it will be identified. 

An unknown displacement D(c,  t) acts on each section r(~) at each instant of time t, such that 

r(cY) ---> ra(ff ,  t) = D ( ~ ,  t) + r ( f f ) ,  ra(ff ,  t) = ( a ( o ,  t); i2(ff , t), j2(o, t), k2(ff, t)) 

Note that no assumption is made regarding the perpendicularity of the section of the curve (~, t) 
a(a,  t). The dark dot denotes the natural action of D on the set of affine bases (in mathematical terms 
there is a stratified beam structure). 

The kinematics of the system is specified by the velocity field 

vc: [0, l] x R + --+~: (o, t) ~ vc(o, t) = D(o, t) -l o ~D(o, t) 
~)t 

and the acceleration field 

and the strain field 

0 e" [0, 1] • R + ---> ~ :  (if, t) ~ oc(ff, t) = 3vc(ff' t) 
�9 bt 

e~: [0, l] x R + ---> ~ :  (o ,  t) ~ ee (o ,  t) = D(O,  t) -1+ o 0D(cY, t) 

The small circle denotes composition of the mappings. 
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Note that the field o ~ e~(o, t) remains unchanged for superposition with motion as a solid whole. 
We will assume that the motion is specified by the relations Dl(t) ~ D(o, t). Then 

e ~ ( o ,  t)  = ( D L ( t )  o D ( ~ ,  t ) )  -1 o D ( D l ( t )  o D ( o ,  t ) )  

= D(o, t) -1 o Dl(t) -l o Dl(t ) o ~9D(O',3O t) = D(o, t) -l o 3D(o,~o t) = e~(o, t) 

Kinematics and dynamics. According to the chosen model we will assume that at each instant of time 
t and in each section ra(o, t) we have: (1) the distribution (o, t) ~ ~-(o, t) of the moment fields, describing 
the external action, (2) the distribution (o, t) ~ O(o, t) of the moment fields describing the internal 
actions (action from the "right" with respect to the section o of the part of the system on the "left"), 
(3) two concentrated forces at the ends fr0(t), ~-l(t) (in some cases we can consider a family of 
concentrated forces ffk(t), applied in the section ok (k = 1 . . . . .  n), which specifies discontinuities of 
the quantity o ~ O(o, t) and defines the behaviour on each element ([Ok, Ok + 1]), (4) the distribution 
o ~ o0 = P0(O) of the mass density in the initial configuration, and (5) the distribution o ~ H,  (o, t) 

r x . ,  . , �9 

of the operators ~ ,  describing the inertial actions (if necessary the distribution o ~ H~(o) of the linear 
operators of inertia in the initial configuration is also used), and we have the following correspondence 
between H, and Hra 

Ad(D(o, t)) o Hr( l y  ) o Ad-I(D(o, t)) = Hro(O , t) 

General equations 
Proposition 1. The equations of the system in the Lagrange description have the form (the arguments 

of o and t are omitted) 

~-c = PoH,( bc) + [ oc, PoHr( v~) ] _ [e c, O~] 30  c 
8o 

C = = - o C ( / )  

(2.1) 

where, for each object U = U(o, t) of the system the q u a n t i t y / f  = Ad(D(o, t)-l)U is the Lagrange 
expression for the function U, i.e. the function considered with respect to the initial configuration�9 

Proof. Consider the part of the system situated between o and o + do. It is in equilibrium in the 
current configuration if 

~nr(O , t)(Ad(D(o, t))(1)c)) 30  

3(Ad(D(o, t))H,(o)(vc)) 3(Ad(D(o, t))O c) _ 
Ad(D(o, t))ff~(o, t) = P0 ~t - c3~ - 

= p0Ad(D(o, t))(H,(i) c) + [u,  Hr(VC)]) - A d ( D ( o ,  t)) [e c, O c] + igo ) 

Using the biektive mapping Ad(D(o, t)) -1 we arrive at relation (2.1). 

Remark. This coordinateless form of the equations enables us to identify the elements exactly and, in particular, 
their non-linear elastic properties. The appear in the terms [v r pH,(vc)] and [e c, Oc]. Moreover, this formulation 
is of interest mainly in relation to the fact that differential calculations have already been carried out so that scalar 
equations are obtained. 

We will now show how certain classical models can be included in the model considered. 

3. SOME C L A S S I C A L  M O D E L S  

The general classical approach consists of choosing a Frenet trihedron (a(o), fro), n(o), b(o)), which 
accompanies the curve o ~ a(o). Note that this choice, in general, connects three of the six degrees 
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k2 t) 
k ~ ,  t ~  

kl r(O) 
Fig. 1 

of freedom for each of the sections. We will use the following classical notation, omitting the variable 
t from the arguments. We recall that we have the relations 

aoda c~(o)t(o), aoat = v---~ nt6) 'cx(~ . . aodn ct!o! t (o  ) v ( 6 )  + b(o),  ~-~ = - n (o)  

where v is the radius of curvature and x is the radius of torsion of the curve. 
With each system of coordinates ~ = (,4; i, j, k) of the affine space ~ we associate a basis ~ = (i, j, 

k, ~, ~, ~) in the space ~ according to the following rule: for every m ~ % we put 

i(m) = i, j(m) = j, k(m) = k 
~(m) = i A A m ,  rl(m) = j A A m ,  ~(m) = k A A m  (3.1) 

We will use the basis ~1 related to the system of coordinates (A(o); il(o), jl(6), kl(O)), to describe 
the vectors of the Lie algebra ~ (see Fig. 1). We obtain the following proposition. 

Proposition 2. If 

ra(6, t) = (a(o, t); iz(o , t), k2(o, t)) = (a(o, t); t(6, t), n(o, t), b(o, t)) 

Proof. We first note that 

then 

e c = col[0t(o) - 1, 0, 0, r 0, r 

doda = a ( o ) t ( o )  = 3(D(o,3ot)A(o)) = ~D(o,3__.___~t)A(6) + D(o, t ) i l (o  ) 

Multiplying this equality by D(6, t) -1, we obtain 

D(O, t)'-ldad-o = D(o,  z)"-10D(~ t)A(o) + D(o,  t ) - lD(o,  t ) i j (o)  = 

= r t ) - l t (o)  = eC(A(o)) + il(O ) = (x(ff)il(o) 
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Moreover, 

d t (o)  n(o) = t)i l 
do 30 

since il is independent of ~. Multiplying the last equality by D(o, 0 -1, we obtain 

a ( o ) _  _ a ( o ) ,  D(O, t)-la!O!n(~ = D(O, t)-'n(o) = v - ~ U ( u ,  t)-lD(o, t)j, = v - ~ a  , = m~ ^ i, 

In the same way we obtain 

a(o);  ~_ a(o)L. " a ( ~  ~ -  OleC A k, T = %c ^ j , ,  

In turns out that the displacement field is bounded because three components of the vector e c are 
equal to zero. 

By duality, the three components of the vector O c cannot be obtained using the defining relations. 
In fact, if we write the equations using the Virtual Power Theorem, these components of the vector | 
appear as Lagrange multipliers. Here, if the expression for | in the basis ~1 has the form 

0 c = col[C, MI, M2, N, T],/'2] 

then, by virtue of the chosen model the quantities T1, 7"2 and M1 are none other than the previously 
considered components of the vector O c. It should be added that this choice of the mobility of each of 
the section r(o) corresponds to the hypothesis that each of the sections remains during the motion 
perpendicular to the curve ~ ~-> a(o, t), which is the classical hypothesis of beam theory. Moreover, in 
the string theory, each section is assumed to be a point section. This imposes restrictions in kinematics, 
kinetics and dynamics. We will now discuss these propositions. 

The classical theory of  beams. We will assume that the motions are plane: motion occurs in the plane 
(il, Jl) and the load is also situated in this plane. We will also assume that the previously assumed 
hypothesis that the sections are perpendicular holds. 

The equation of statics has the form 

ffc + [e C, O ~1 + ~O ~ = 0 

In the basis ~1 we obtain 

0 

0 
F 

F 

P 

0 

a ( o ) -  1 
0 

0 + 

0 

0 
a (o ) /v (o )  

0 

0 
M + 

N 

T 

0 

0 

0 

M = 0  
s 

T 

0 

(3.2) 

We now consider the fact that the vectors from ~1 are functions of ~ so tha tA = A(o). It can be 
proved that if 

u = xi t +YJl +Zkl + ~'l~l + ~'2rll + ~'3~1 

du 
d"o = x'il + (Y'- ~'3)Jl + (z '+ ~.2)kl + ~':~1 + ~'2rl, + ~'3~1 

then 

Equations (3.2) take the form 

F + - ~ + a T  = 0, dN a T = O, p + d T + a - N  = 0 
F +  d-'~- v do v 

where all the quantities are functions of o. 
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If the beam is rectilinear, i.e. 1/v(o) = 0, and the line o ~ a(o) is neutral, i.e. it is not elongated, 
then c~(o) = 1, and we arrive at the classical equations of the statics of a rectilinear beam. 

The theory of an inextensible perfectly flexible string. Since the topic of discussion is the plane equilibrium 
a perfectly flexible string, each section is considered as a point. We have 

O" = co110, 0, 0, N, 0, 01, e c = co110, 0, 0, 0, 0, 1 / v ( o ) ]  

Equations (3.2) in this case take the following classical form 

dN I N F+--~ = O, P + v  = 0 

Suppose the external action is its own weight. We put 

t = cosl3i 1 + sinl3jl 

Then 

dN 
- psin[3 + 0 ~-~ = 0, -pc~  = 

where p = p(o)  is the mass density. Integration of these equations (for constantp) gives the classical 
catenary. 

In a similar way one can investigate a set of other models. For example, in Timoshenko's model one 
degree of freedom is added to the displacements, associated with the Frenet trihedron, already used 
in Section 2, denoted as Dr(o, t). Then, for example, the total displacement is specified as 

D(O, t) = Df(o, t) o exp(w~l ) 

We can also use other representations, but then one must bear in mind the non-commutativity in the 
non-linear approximation. 

Automatic derivation of the scalar equations of motion of  the system considered. By virtue of the fact 
that there are several possible representations of the displacements, we will dwell on the automatic 
derivation of the scalar equations of motion of the system considered when there is a certain freedom 
in choosing the representation of the mapping (o, t) ~ D(o, t) and freedom in choosing the initial 
configuration r(o). We will present the main elements of this program. 

1. In general, the position of the system is defined by two parameters w = (o, t), where o is the 
curvilinear abscissa of the section and t is the time. 

2. We introduce three bases in the space ~ ,  recalling that with each system of coordinates 
~t = (A; i, j, k) in the affine space % we associate a basis ~ = (i, j, k, ~, rl, 4) of space ~ according to 
the rule (3.1). The three bases G0, ~1, ~2 are associated with the three distributions of the affine systems 
of coordinates: the fixed system of coordinates ~t0 = (A0; i0, J0, k0), the system of coordinates 

~tl = ~1((y) = (AI; il, Jl, kx) = ( D r ( O ) ( A o ) ;  D~(o)(io), Dr(CY)(J0), Dr(CY)(ko)) 

which defines the initial configuration r(o), and the system of coordinates 

~2  = ~2(  (y, t) : (D(o, t)(A1); D(cr, t)(il) , D(cy, t)(jl),  D(o, t ) (kl )  ) 

which defines the actual configuration at the instant of time t. 
3. The basis chosen to write the scalar equations will be the basis ~ ,  which depends on o, but this 

argument will be omitted. Moreover, in order to represent the element D(o, t), we will denote by 
P] (i = 1, 2, 3) the three vectors chosen from the family ({1, rh, 41) and we will write 

D(o, t) = exp(u(o, t)) o exp(Vlpll) o (VzP~) ~ exp(V3p~) 

where u(o, t) = xi 1 + YJ1 + zkl is a constant vector field such that exp(u(g, t)) is the translation part of 
D(o, t), while exp(~ip~) describes rotation by an angle ~0 i about the p] axis (i = 1, 2, 3). The family 
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p~ (i = 1, 2, 3) is chosen arbitrarily, but must allow rotation to be described. The scalar unknowns of 
the problem (x, y, z, ~1, ~2, ~3) are functions of t and ~. 

4. The elements of group D are represented solely by its adjoint representation. Since this 
representation is a group morphism, it is sufficient to express Ad(expX) only f o r X  ~ ~1 and to specify 
its matrix in ~1. 

If u = col[a, b, c, 0, 0, 0] is a constant vector field in ~1, we have 

I A 
Ad(expu) = --1 , 

O I 
A 1 = 

0 c -b  

- c O  a 

b - a  0 

where I is the identity matrix and O is the zero 3 x 3 matrix. 
If u = gl = col[0, 0, 0, 1, 0, 0], we have 

A d ( e x p ~ u )  = A20 A 20 , A2 = 
1 0 0 

0 c o s a - s i n t x  

0 sina cosa  

If u = 111 = col[0, 0, 0, 0, 1, 0], we have 

Ad(expau)  = A 3 0  , 
O A 3 

A 3 = 
c o s a  0 s i n a  

0 1 0 

- s i n a  0 cosa  

If u = ~1 = col[0, 0, 0, 0, 0, 1], we have 

A d ( e x p a u )  = A 4 0  , 

O A 4 
A 4 = 

cosa  - s i n a  0 

sina cosa  0 

0 0 1 

5. For the Lie bracket the matrix of the brackets has the form 

LI L2 , 

L 2 0  
t 1 -- 

0 ~1-111 ,  
-~1 0 ~1 L2 = 
111 -~l 0 

0 k l - J l  

- k  1 0 i l 

J l - i l  0 

The remaining components are found from the bilinearity. 
6. As regards the differentiations we note that if v(t, a) = vi(t, ~), (i = 1 . . . . .  6) is a vector form 5~, 

specified in the basis ~1, we have 

Ol)(t, o) _ t)l)i(t, o) Or(t, ~) c)l)i(t, a) 
= ~ + [ t o ,  v ] ,  i = 1 . . . . .  6 

3t ~t ' ~o ~o 

where the vector co belongs to the data of the problem considered and is a function in Dr(o), defining 
the initial configuration of the system. 

7. Suppose w = t or w = o. We put successively (i = 1, 2, 3) 

. . . . .  Ad(exp(~ip l ) )  A 0 Ad(expu),  A i Ad(exp(u))  o o i 

COo = ~W' (Oi = "~W pl +Ad(exp(WiPl ) -  1)t'~ 
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Suppose 

oc / = Ad(D) Aio~ i 

\ i  =0 -/ 

Then, i f  w =  t, we have cot = 0 and 0~ c = I x, while if w= ~, we have 0)~ = co and o3 c = e c. 

8. The matrix Hr of the inertia operator  H r  in the basis ~ j  depends on the data of the problems. For 
example, if the origin of the system of coordinates ~tl coincides with the centre of mass of the 
corresponding section and if J is the matrix of the central tensor of inertia in the basis 01, Jl, kl), we 
have 

Hr lIO  
I O  

9. The coordinates 0i of  the vector O c in the basis ~ specify dynamic variables of  the system. 
As an example we will give an expression for one of the six scalar equations obtained (we have chosen 

the projection onto the rh axis, and a prime denotes a partial derivative with respect to a while a dot 
denotes a derivative with respect to t). 

C 

~'4 = (03C2S3 -- 02C2C3)Z' + 

"1- (03(r 3 + S1S2) -I- 02(CLS3 - -C3S1S2) ) y '+  

+ ( % ( c l  s2 - c 3 s j ) )  - 0 2 ( c l  c3s2 + s l s 3 ) x ' +  

.. .2  .2  2 2 .2  .2  2 
+ Pl l l (~3 - ~2c2 - ~ls2) + 9(122 - I33)[~g2c2(s3 - c3) + (~2 - IglC2C3S3)] - 

- 02(CLS 2 + s i s3 )  + 03(ClS 2 - c3s1) + 05(1[/~ - c21g' 1 ) + 06(11/~_ + c21[/'i) + 04 

where I 0 are the components of the inertia tensor of the section and, for brevity, we have introduced 
the following notation 

c i  m COS~I/i, S i = s i n a i ;  i = 1, 2,  3 

The complex form of this equation indicates that it would be difficult to obtain it without using the 
coordinateless approach described above and without indicating a program for deriving these equations 
automatically. 
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